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The growing environmental concern of modern societies has been causing an
increase in the demand for electric vehicles. Although this is a positive change
in many perspectives, the consequent increase in power demand may crate real
problems for power systems operation. In order to contribute to the mitigation
of this problem, it is imperative to explore various solutions within the scope of
intelligent networks, avoiding the difficult and costly process of infrastructure
reinforcement and increase in electrical generation capacity. As part of this
extensive analyses, this thesis aims to access how the control of the Electric
Vehicles (EVs) charging process, considering the existence of different demand
response programs considering distinct objective functions in the optimisation
process. In this thesis, two scenarios for the operation and management of
electrical vehicles charging, are proposed. In the first scenario, the aim is to
evaluate the impact that an optimised charging of EVs, utilising the proposed
objective functions and demand response programs, can have. The main
conclusion is that there is the possibility to reduce the cost of charging and,
for the system operators, it was accessed that they can benefit from reduced
power demand during peak hours. In the second scenario, we intend to study a
system in which the variation in energy demand by electric vehicles can influence
the production technologies necessary to satisfy all demand and, consequently,
production costs. This case is interesting, especially in isolated systems such
as islands. The main conclusion of this second scenario is that an aggregator
can directly control the charge of an EVs, only in times of network congestion
and instability, and contribute to the management of energy consumption. In this
scenario, definition of consumer compensation are also studied when the consumer

is willing to give up a certain percentage of energy consumption.
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1. INTRODUCTION

The need to urgently reduce the CO2 emissions
resulting from the combustion of fossil fuels is now
more important than ever. Not only to avoid the more
pessimist future reports on climate change, but also to
comply with targets defined in the Paris agreement and
the European Green Deal.
In this context, the continuous growth of Electric
Vehicles’ (EVs) use worldwide [1], can be seen as
one of the main pillars for a more sustainable future.
The transport sector is responsible for a quarter of
all greenhouse gas emissions [2]. The replacement of
Internal combustion Engines (ICE) for electric motors
can decrease significantly the emissions of transport
sector. Of course, this depends on how the energy they
utilise to charge, is produced (from fossil fuels, nuclear,

renewable sources, etc).
Despite this, some concerns must be scrutinised in
order to accommodate the transition to the large scale
utilisation of electric vehicles.
The main challenges that must be addressed is the
sudden influx of new energy demand estimated to occur
from the rise in utilisation of Battery Electric Vehicles
(BEV). Such increase in power demand, provoked
mostly by Light-Duty Vehicles (LDV) home charging
[3], will have an important effect in the already sensitive
peak hours. In normal weekdays, most of the EVs users
arrive at home in the end of the day when the power
consumption is already very high (peak hours) [4] .
The increase in Power Demand (PD) during such time
intervals, if not properly addressed, may have several
consequences in the overall power systems [5] :
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1. Further “unflattening” of the demand curve. In
other words, increase in the volatility of usage of
energy during the day;

2. Need of reinforcement of the transmission and
distribution grids;

3. Increase of power generation capacity;
4. Increase of ancillary services need (voltage and fre-

quency regulation) due to the increasing volatility
of large amounts of energy production/demand re-
lation.

All of these aspects/consequences result in costs that,
in the end, should be supported by the costumers
[6]. Considering the time necessary to expand the
transmission and distribution network imposed by the
EVs increase, we can conclude that smart management
solutions for EVs charge should be proposed and
adopted by the power system actors.
In this context, Demand Response (DR) programs
appear as one promising solution to mitigate the
problem. The degree of implementation and use of DR
programs worldwide, is diverse. Time-of-Use (ToU),
which establishes different energy prices for different
periods of the day, is already widely used in industry
and households around the world [7], [8]. Direct
Load Control (DLC) programs, which consists of the
direct manipulation of the consumers load are only
used in big energy consumers and with very specific
contracts. Both ToU and DLC based programs have
proven improvements in some critical areas [9], [10]:

• The difference in electricity prices, offered by ToU,
aims to promote more off-peak consumption. With
the same purpose but with different method, DLC
forces the participants to demand less power during
peak periods. Both of these lead to a more spread
out energy consumption during the day, decreasing
the volatility of energy usage;

• Less volatility results in the need for less ancillary
services and decreases grid congestion in periods
with excessive power demand;

• Both ToU and DLC provide savings for the
consumer, as long as they change their energy
consumption behaviours.

Although the previous two programs are already estab-
lished for normal consumption, the implementation of
DR for electric vehicles has yet to be subject of in depth
study.
In this context, this thesis proposes two methodologies.
The first methodology, or scenario, considers several DR
programs, proposed by the system operator or retailer
and the use of different objective functions to optimise
the EVs charging, Participant Perspective. In the
second methodology, the EVs charging is managed by
an aggregator both considering the benefits for the users
and for the system, Aggregator Perspective. This
methodology was developed to be used only in emer-
gency situations with the agreement of the EV users.

Afterwards, it is assumed that the EVs charging have an
impact in the generation dispatch and consequently in
the total generations cost. This is particularly adapted
to small and isolated systems such as the ones in is-
lands or remote areas. The results obtained using the
proposed methodologies are then illustrated, and com-
plemented with their analyses. Finally, a summary of
the most relevant findings and takeaways are provided,
as well as some suggestions for future research on the
matter.
In summary, the overall goal of this thesis is to help with
the complex issue of accommodating the large scale in-
tegration of electrical vehicles into the grid, without
it needing to suffer major alterations and/or reinforce-
ments. It does so by proposing various methods of
controlling the EV charging process. These methods
mainly consist in adopting domestic and industrial de-
mand response programs and better fitting them to the
EV charging reality. The control and implementation
of such programs is then done with objective functions,
who are also formulated and proposed in this thesis. All
of this is tested and evaluated utilising a set of realistic
data (vehicle travel data, electricity price tariffs, charg-
ing power, etc) in order to access the real life viability
of what is theoretically proposed.

2. STATE OF THE ART - DEMAND RE-
SPONSE AND ELECTRICAL VEHICLES

2.1. Demand Response

2.1.1. Purpose and Definition of Demand Response in
the Smart Grid Context

One of the many objectives of grid digitalization is the
flattening of the demand curve [11]. In other words, the
leveling of energy consumption during the hours of the
day. Such can be achieved by implementing measures
that aim to enhance Load Shifting (LS), Figure 1,
i.e, the reduction of demand during peak periods by
incentivising higher consumption in off-peak periods.

FIGURE 1. Daily Load Shifting Process visualisation

It is with this objective in mind that DR emerges as a
catalyst, by motivating consumers to re-schedule their
electricity demand habits [11]. Being the participation
in DR programs mandatory or voluntary, the final aim
is to eliminate or reduce the need for increasing the
installed capacity. Such provides greater reliability to
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the power system, decreases grid degradation, due to
lower congestion and overload, and increases market
efficiency. All of this, in return, will result in financial
gains for both the consumer, seeing as the expenses in
grid management are reflected in energy prices, and the
utilities, because they avoid these extra reinforcements.
In addition to the monetary benefits, a flatter demand
curve will also lead to lower carbon emission [12], by
enabling a more efficient usage of the energy produced
and peak clipping (peak demand reduction).

2.1.2. Utility/Costumer Interaction in DR Programs
Although DR promises to be one of the fundamental
pillars for a more efficient power system, its benefits
depend heavily in costumer participation in the
proposed programs. Since the largest and most
immediate benefits fall upon the utilities, it is their
job to properly captivate the consumers and facilitate
their integration in the technology heavy smart grid
environment, required for some programs. Before
delving deeper in the subject of facilitating customer
participation, it is important to remember what is the
point of view of each actor.
Utilities profit due to the fact that no extra power
capability installation is needed to accommodate the
demand. On the other hand, consumers can obtain
a variety of gains, such as monetary savings or the
satisfaction obtained for their help in keeping network
stability and reducing CO2 emissions. So, although this
can make DR feel like an all around perfect solution,
some uncertainties may arise in the consumers. These
stem from the difficulty of defining the amount of
load one is willing to curtail in a DR situation or
the quantity of profit needed to willingly apply to
a DR service. Utilities should tackle this problem
by offering close assistance and monitoring to the
costumers, helping them to understand the full process
from the beginning to the end, and all through the
length of the commitment.
This should not mean that all the work should lay
in the utilities. The participants should commit to
changing the electricity usage schedules as well as
improving the efficiency of their domestic appliances
when possible. They must also understand the overall
benefits to the global energy system and how important
their participation is to the improvement of their
management.
Of course such problems only apply for scenarios where
the participation in DR programs is not mandatory.
Mandatory participation may only lead to changes in
costumer bill instead of the desired load shifting, while
a voluntary participation ensures a much more active
role in peak demand reduction [13].

2.1.3. Demand Response Programs
In order to obtain the maximum adherence possible,
it is imperative for the utilities to offer a variety of

DR program options. This will help to cover the wide
variety of potential costumer profiles that are expected
to exist in a market as big and all-encompassing as is
the energy consumption sector.
Considering that the list of already in-use DR
implementations is quiet extensive, and will most likely
increase proportionally to the technology evolution,
it becomes important categorise them into broader
groups. In order to make this aggregation, some
questions can be utilised to access some key similarities
between the several DR programs:

• does the utility directly control the load demand of
the costumer, and if so, when?

• are the participants compelled to shift their energy
usage to off-peak periods, without third party
interference, i.e, through hourly tariffs and/or
incentives?

• are the participants rewarded by the utilities for
their change in energy usage directly or through
bill savings?

The answer to such inquisitions leads most stud-
ies [14], [15] and [16], to place such programs into
to two main groups, denominated Dispatchable
or Incentive-Based and Non-dispatchable or
Time-Based, as can be seen in Figure 2.

FIGURE 2. Examples of demand response programs

Dispatchable or Incentive-based Demand Re-
sponse Programs (IBDRP) involve the direct
control/manipulation of the costumers load in order
to reduce the energy consumption either during peak
periods or emergency events. Direct Load Control
(DLC) and Interruptible/curtailable service (I/C) of-
fer participants monetary compensation in exchange
for a pre-specified amount of demand reduction. A
slight variation to these two services can be seen in
the Capacity Market Program, where participants
are able to offer certain amount of demand reduc-
tion during emergency events. The definition of the
amount of reduction, done in the initial contract and
are not subject to short notice changes. On the other
hand, programs such as Emergency Demand Reduction
(EDR) compensate the participants by their measured
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energy reduction, only during DR events, and with
short notice.
Non-dispatchable or Time Based Demand Re-
sponse Programs (TBDRP) utilises period-varying
prices in order to lead end users into shifting their
consumption to less demand intensive periods and,
consequently, flattening the overall PD curve. Time-
of-Use, ToU, pre-establishes different electricity prices
for different periods of the day, being the highest
prices in the peak hours and the lowest during the
off-peak periods. These tariff brackets are previously
defined and remain un-changed for long periods of
time (months, years). Critical Peak Pricing follows
the same structure of ToU, but its peak price is sub-
ject to change during grid jeopardising events, which
should only happen a few hours per year. Real Time
Pricing (RTP) offers a more dynamic variation, being
the electricity price announced to the participant in a
day or hour-ahead basis. A middle term between the
previous two programs is the Variable Peak Pricing
”where specific periods of electricity price fluctuations
are defined in advance. The price fluctuations that
occur in the defined periods, vary depending on the en-
ergy supplier and the market conditions” [17]. Finally,
Inclining Block Rate, IBR, offers a non-time based al-
ternative, increasing the price of electricity parallel to
the amount utilised by the costumer. In other words,
the price per kWh increases in blocks depending on the
cumulative total consumed energy. For example, the
electricity costs x/kWh if the costumer uses less than
6.4kWh, and costs y/kWh (y > x) if the user consumes
more. This can be established for kWh hourly, daily or
monthly consumption.

3. DEMAND RESPONSE PROGRAMS FOR
ELECTRICAL VEHICLES

3.1. Methodologies/Scenarios Scope

There where two utilised methodologies. The first,
denominated Participant Perspective, describes the
combined use of different objective functions and several
demand response programs, proposed by the system
operator or retailer, in order to optimise the EVs
charging. The second methodology, denominated
Aggregator Perspective, proposes an EV charging
is strategy managed by an aggregator. This is done
considering the benefits for both the users and for the
system, and is to be used only with the consent of
the EV owners and during grid emergency situations.
In this Aggregator Perspective, it is assumed that
the EVs charging demand is significant enough to
have an influence in the generation dispatch and, as
a consequence, in the generations costs. This makes
this methodology specially aimed at small and isolated
systems (islands or remote areas).
How each of the scenarios that will proposed fit into
each of these scopes is shown in Figure 3.

FIGURE 3. Scopes and the scenarios within them

3.2. Proposed Demand Response Programs

Inspired by existing Home/Industrial DR programs,
the strategies described aim to focus solely on the EV
charging prospect.
Constructed with the end goal of increasing the
costumer and/or utility’s benefit, these programs are:

1. Non-Participant (NP): the EV owner has the
standard flat tariff and charges his vehicle as
fast as possible without any control. This is
used as a comparison tool for the other program
performances;

2. Time Of Use (ToU) [18]: the retailer offers
different electricity tariffs for different times of the
day (higher prices in peak demand hours and lower
prices in times of lower demand). This program is
similar to the one which already exists for normal
loads, but in this case it will be used to access the
impact it can have on EV charging;

3. Smart Contracts [19]: the user agrees to re-
duce the charging power (Charging Power Lim-
itation (CPL) and Proportional Spending-
Charging (PSC)) or to limit the maximum
amount of battery charge (Maximum SoC Lim-
itation (MSL)) his BEV can have, during certain
periods of time. This time intervals are usually
the peak demand periods, helping to flatten the
power curves while producing savings, by reducing
the amount of money spent on those segments.

• Charging Power Limitation (CPL):
establishes a maximum percentage of the
charging power that can be requested during
peak hours. For example, restricts the
maximum charging power to 50% of its
maximum during those periods;

• Proportional Spending-Charging
(PSC): similar to CPL but the limited
power varies, depending on the amount of
battery used in the previous travel. For ex-
ample, if a car used 40% of its full battery
capacity in its previous travel, i.e. arrives at
the charging station with 60% of its capacity,
than it will only be able to charge at 40% of
the maximum charging power.

• Maximum SoC Limitation (MSL): re-
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stricts the maximum SoC a vehicle can have
during peak hours. For example, a maximum
60% of SoC can be establish for the vehicles.
This means two things: if the vehicle arrives
to the CS with less than 50% of its capacity,
it can only charge to 50% during peak peri-
ods. If it arrives with more than 50%, than it
will not charge during those periods;

4. Real Time Pricing [20]: similar to ToU but
the prices can change daily, depending on the
electricity market or other factors. The EVs can
charge more or less depending on the prices and on
the EV owner risk aversion/profile;

5. Incentives [21]: the participant will decrease
his demand voluntarily in normal peak hours
or in mandatory fashion during DR events.
Restrictions are not implemented by direct control
of the vehicle, being the costumer only complied
to participate by a previously defined payment
made by the company responsible for the grid
functionality. In some cases, the costumer can be
penalised for not fulfilling its energy consumption
reduction obligations;

3.3. Methodology for Participant Focused Sce-
narios

3.3.1. Optimisation
A Mixed-Integer Programming approach (MIP) [22]
is utilised to access the best (minimal) result for
each objective function. The OF should be designed
considering the charging costs and the consumer
satisfaction [23]. Costumer satisfaction varies
depending on charging speed, price or peak power.

3.3.2. Objective Functions
For this experiments, several objective functions were
developed to possibly evaluate results. All of them
were utilised when implementing the various DR
profiles previously mentioned. The results from those
experiments were then analysed in order to determine
how the various OF/DR programs combination lead to
different outcomes.
Making use of the previously established variables,
the function of each of these OFs can be succinctly
theorised:

• Business as Usual (BAU): The main goal of
this OF is to simulate the charge of EVs without
control. This means that the EVs, belonging to
our test group, will be charged as fast as possible;

• Cost Minimisation (CM) [24], [25]:Aims to
minimise the overall charging cost of the vehicles,
obtained by multiplying the power of charge used
by every vehicle at every time interval, for the
respective charging price;

• Cost minimisation + Comfort Level
(CMCL) [26], [27]: While still taking

into consideration the cost of charging, CM, it
also gives importance to how close the electrical
vehicle is to its total capacity during every period.
In that case, the vehicles are charged faster but
for the same cost, increasing the comfort level of
the user;

• Cost Minimisation + Peak Limit (CMPL):
CM while also trying to have the least possible
impact on the grid, i.e, also penalises peak power
demand.
Because it considers the global peak power of
the vehicles charging, it can be used by a Fleet
Operator or a parking lot manager;

• Cost Minimisation + EV Peak Limit
(CMPLEV): similar to CMPL but instead tries
to limit the maximum demand of each vehicle;

• Opportunity Cost (OpC): the BEV is only
mainly in off-peak hours, limiting the opposite
event to the strictly necessary, i.e., if the the vehicle
does not have enough battery charge to fulfil the
Required SoC demanded by the participant.
This is achieved by establishing a Strike Price and
using it to modify a CM objective function;

• Cost Minimisation + Vehicle-to-Grid
(CM+V2G) [28]: based on CM. However, in
this case, discharge is allowed during peak periods
or when convenient. The price received by the
owner for discharging its vehicles battery energy,
is the maximum price of electricity on the market
day (in RTP) or in his tariff program (in the other
DRPs) plus the price considered for battery degra-
dation. Such will result in an incentive for the
vehicles to give electricity back to the grid during
those periods, in an effort to reduce the objective
function value. This implies the existence of con-
tracts which would allow the system operator to
buy that energy. The value chosen for the battery
degradation monetary compensation was 0.06/kW
[29].

3.3.3. Constraints
Within the previously described experimental pro-
grams, some restrictions should be imposed, leading to
different results:

1. Minimum SoC (MinSoC): imposes the vehicle
to always have more than a certain percentage of
its total battery capacity, usually around 20%, in
order to avoid battery degradation,

2. Required SoC (ReqSoC): imposes that the
vehicle should have a certain percentage of its total
battery capacity, at the time of departure. This
value is decided by the participants and depends
on their travel needs. The charging of the vehicle
beyond or below this value is penalised in the
simulations.

3. Required Kms: similar to ReqSoC but with a
minimum amount of Kms. Such can be achieved
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by analysing the driving profiles of the drivers, in
order to understand the kms usually used after the
departure, or by simply establishing an emergency
limit, taking into account the minimum distances
to the nearest hospital, supermarket, school, etc.
In either option, it is necessary to know the battery
model, capacity, charging efficiency and if the car
has an additional ICE (PHEV).;

4. Vehicle to Grid Capability (V2G): defines if
the BEV is able to supply energy to the grid or
not. This information must be supplied by the test
group of vehicles utilised;

5. Maximum Charge and Discharge of the
BEVs: imposes the maximum power charge that
every individual vehicle can receive or discharge.
This information is given for each vehicle in the test
group. However, we need to evaluate the CS-EV
relation, which will give the real maximum power
charge the vehicles can demand;

6. Maximum Charge and Discharge of the
Charging Stations: imposes the maximum
amount of charge power that each charging station
can dispense or receive, in total, to or from the
vehicles connected to it;

7. Maximum Power Source: imposes a maximum
power demand value, that can be requested by the
overall simulated system. This value is determined
by the summation of the maximum power each
generator can supply in each period of simulation;

8. Energy Balance: establishes that the simulation
must obey energy balance laws. In other words, the
power supplied by the sources (generators) must
be equal to the power demanded by the consumers
(charging stations);

3.4. Methodology for the Aggregator Perspec-
tive Scenario

3.4.1. Event Control

The aim is to simulate an aggregator intervention
in the vehicles charging process during peak hours.
In other words, the Event Control program
is an aggregator controlled DLC, which is
only utilised in situations where the grid is
going through an emergency situation. This
program is only applied with the consent of
the participants and is only aimed to be used in
participants who are not actively invested in any other
demand response program who restricts their charging
process, i.e. the previously described Smart Contracts
or V2G.
The method consists on defining the total power of the
system as the summation of all the max powers each
vehicle can demand, and limit it to a certain level by
multiplying it by a constant.

3.4.2. Demand Reduction Compensation
In addiction to the previously described load curtail-
ment aspect, there is the more complicated issue of
compensation pricing. In order to reach a fair value,
both parties involved, consumer and aggregators, must
agree that they are benefiting from the proposed solu-
tion. This means that the determined value of compen-
sation must ensure that retailers are not financially pe-
nalized and that the discomfort caused to the costumer
is adequately remunerated. A method was utilised
to address this two symbiotic counterparts, keeping in
mind the aim is to develop methods that equally ben-
efit the participants and the retailers leading to to a
smoother adoption of this new methods by both parts.
This method is the Social Welfare Maximisation
(SWM) in [30], [31], with a slight modification: the
energy suppliers stake in the problem is replaced by the
retailers interest, as the latter would most likely be the
one involved in participant procurement and negotia-
tion.
The first step is to specify the problem mathematically.
The formulation includes:

• A function to maximise: the social welfare
can be defined as the sum of the normalised
utilities related to the intervening parties; The
Aggregator Utility (UR) comprises the retailer
profit.
On the other hand, the costumer utility (UC)
can be described as the difference between a
previously established satisfaction function and the
product of the energy demanded and the price paid
by it;

• A set of restrictions: the total EV charging power
demand must be bigger than zero, and can’t exceed
the maximum value established by the sum of
all the CS maximum power capacities or vehicle
charging capabilities (which ever is bigger), and
must be equal to the supplied power at every
moment;

• the method utilised to execute the optimisation,
based on the previously problem formulation, is
the Lagragian Relaxation with the Karush-Kuhn-
Tucker (KKT) conditions;

The second steps aims to further develop the previously
formulation, by establishing the two missing factors:
the retailer operational costs (OC) and the
costumer satisfaction function.
To determine the value of the OC we first assume the
demand curtailment is to occur at a certain hour of
a certain day, and so, the retailer can represent the
aggregated curve of the offers in the market, through
a quadratic or linear equation. Finally it is needed that
the function returns the total cost of production and
not a currency amount per hourly energy ratio. So,
this function is multiplied by the power demand at each
point.
The only thing left to determine is the Costumer
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Satisfaction function. Here, and based on [31], it
is proposed the use of a sigmoid function as this type of
functions is often used to describe costumer satisfaction
[32] and [33].
Our study is only focus on the consumption of a
small group of vehicles at a certain hour. As so,
this scenario is meant to be used in an island
or remote system, where the EV charging
process may influence the dispatch of production
units and, in turn, the costs of production.
Acknowledgement of such leads to a division in this
Social Welfare Maximisation method, depending on
the comfort evaluation:

1. SWM-A or Overall Energy Consumption
Comfort: The calculations are made by joining
the daily total power that could potentially be
requested by all EVs, to the total domestic
consumption (contracted power). Then the
sigmoids would be designed to reflect the comfort
given by each MWh (megawatt-hour) consumed.
This would be an accurate way to establish the
incentive payments, if the vehicles SoC is given the
same importance as other quality of living apparel
(fridges, ovens, cleaning machines, etc).
In this case, the OC are the ones calculated by
the minimum square error or polynomial fitting
method techniques applied to the hour offer curve.

2. SWM-B or Participant EV Charging Com-
fort: In our case, for two hundred vehicles, the
maximum demand is around 2 MW. Seeing as the
curves obtained for the hourly offer in Portugal
usually are in the thousands of MW, this creates a
dimensional problem.
So, the sigmoids are designed to reflect the cos-
tumer satisfaction at the DR event hour and only
for the participant demand and the OC function is
simply the spot price multiplied by the power. So,
to evaluate the maximum welfare, one establishes
the costumer and retailer utilities and acquires its
maximum summation value. Then establishes it as
its optimum demand point and proceeds to calcu-
late the incentive payment linked to each reduction
percentage;

Finally, an alternative method is proposed to bypass
the difficulties that the previous SWM method may
demonstrate, utilising an Profit Based Formula
(PBF), based on the findings in [34]. This way re-
quires no participant satisfaction study or function
dimensioning, relaying only on data readily available
to retailers/FOs. Such information consists of some
previously identified variables: total demand and cor-
respondent spot price, at event hour, before and after
reduction. All of this is easily done by consulting
the hourly offer curve. However, this would require
a reliable knowledge of the country wide CS power
summation, which may prove difficult. However, if
the proper documentation is required from the owners

when purchasing a charging station, this is entirely
feasible.
The “fairness” of this compensation rises proportion-
ally with the number of vehicles who participate in
such control. It is also important to denote that both
the retailers lost of profit and the costumers benefit,
are taken into account, making this a less complex
social welfare maximisation method [35, 36, 37, 38].
However, as the results show, costumer benefit is a pri-
ority, since the aim is to attract the maximum amount
of participants possible.

4. RESULTS EVALUATION AND COM-
MENTS

4.1. Implementation

4.1.1. Scenarios
The stated scenarios, try to emulate week-day trips
related to the average working schedule. Therefore, the
participants would leave their home in the morning (6 to
8 am) and return at the end of the day (6 to 8 pm), being
the days divided into 24 periods, each one representing
one hour.
Every vehicle charges on its individual CS, with a
maximum charging capacity of 7.2kW (Type 1 AC
connector). This is done in order to further simulate
a regular home charging situation, seeing as these
are the most commonly used in LDV 1. Vehicle data
(battery capacity, charging and discharging efficiency,
v2g capability and maximum power of charge) and
their corresponding travel data (initial SoC, arrivals and
departure periods and the energy losses in between),
were obtained from [39].
The Non Participant profile is used in every scenario in
order to establish a baseline for result comparison.
Being the broader picture already characterised, it is
important to define the full scope of the experiments in
question, by further delving into the specifics.

• Scenario 1: implementation of several OF/DR
combinations in order to control the charging
process of 200 individual vehicles, and analysis of
the resulting outcome variations.
Each participant profile is independent from the
others, so their travel habits and energy usage are
fairly distinct (recurrent long or short trips, or a
mix).
Each vehicle has its own uniform travel pattern.
Some EVs always perform low energy travels (10%-
30%), some high energy (70%-90%) and other in
between (40%-60%).
In order to evaluate the different results, a base line
situation is defined and named as Non-Participant
(NP), utilising BAU as the optimisation OF and
the single tariff plan, in order to represent the

1https://pod-point.com/guides/driver/ev-connector-types-
speed
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normal charges one would get by not entering any
DR or optimisation programs;

• Scenario 1.1 or V2G Capability: all technical
aspects are equal to the previous scenario, but this
scenario focuses on a vehicle-to-grid program an
user can endeavour in, based in an appropriate
objective function, CM+V2G. While the OFs
used in Scenario 1 are used to provide optimisation
to the everyday charging of EVs, CM+V2G is only
activated during periods when the market price
justifies it or/and the grid is in jeopardy. Such
is because these time intervals are the ones the EV
owner can obtain a profit, by requesting from the
retailer an electricity price for his discharge larger
than the one he would pay for charging;

• Scenario 1.2 or Opportunity Cost: the overall
technical scope is in all similar to Scenario 1.
However, for this situation, the test subjects are
limited to ten BEVs who’s profiles are a mix of
large and small travels.
The aim is then to understand if the OC objective
function can lead to, specifically, better economic
results in this subset of vehicle profiles, providing
another option for the hypothetical consumer;

• Scenario 2 or Aggregator Focused Scenario:
focuses on how an aggregator or Fleet Operator,
can help to avoid damage or to facilitate the
grid operations during a DR event, denominated
as Event Control, as well as on how to define
possible compensation payments in return for
costumer demand reduction during peak hours,
Demand Reduction Compensation. This
simulations are adapted for a small system where
the EV charging can affect the dispatch of the
production units and as a consequence the price.
The participation is also voluntary, i.e., this
curtailments only occur if the participant consents
to them;

4.1.2. Tariffs
All time intervals, and their correspondent cost of
electricity, are exact replicas of the ones provided by
Portugal’s largest retailer 2 during the winter periods.
For the Real Time pricing program, the electricity costs
were taken from the spot market of Portugal and Spain3

on the week of 23rd to the 27th of November 2020.
The market price was considered to be 25% of the
price paid by the end consumer (being the rest taxes,
transportation and distribution fees, etc).

4.2. Scenario 1

In order to compare the different DR programs resulting
from the utilisation of the different OFs, there are
three main things to consider: the price of charging,

2https://selectra.pt/energia/empresas/edp/cicloshorarios
3https://www.mercado.ren.pt/PT/ELECTR/INFOMER

CADO/INFOP/MERCOMEL/Paginas/Precos.aspx

here called Total Operational Cost (TOC), the peak
power demand during the five days and the EV charging
demand curves obtained, i.e., how much are they
”flattened” when compared to the base case, which will
be called Non-Participant. This profile aims to simulate
the regular charging of an EV owner who is not enrolled
in any DR program, has a single tariff plan and charges
whenever possible (Business as Usual or BAU).
The main results obtained can be summarised as: the
demand response programs are especially effective in
less cost focused OF, as the latter already minimise
the charging that could occur during the programs
time intervals of operation; Peak Power is directly
correlated to how flattened the curve is, but it has
no impact on the overall TOC, as this peaks can
occur either in peak or off peak periods; Curve
flattening may lead to the vehicle battery not achieving
its intended required Soc limitations. This missing
energy provides a non-significant cost reduction and
cant be used as an alternative to justify the low
TOC in this cases; Real Time Pricing is a complex
choice for costumers, seeing as its performance depends
entirely on aspects that may affect the market prices
(temperature, renewable energy production); Time-of-
Use is very beneficial when paired to cost centred
OFs. This important because ToU is already widely
used, so the adoption of smart charging using these
objective functions could provide immediate benefits;
Minimum SoC Reduction, Charging Power Limitation
and Proportional Spending-Charging programs are very
interchangeable and really depend on the travel profile
of the participant. However, the latter provides the
most stable and balanced charging cut method, which
most likely will be more agreeable to comfort and cost
focused users; Although the location of the max power
demand (in or out of peak periods) is related to the
program chosen, the reduction of this value can only
be done utilising an appropriate objective function to
control the charging process.
The TOC results can be seen in Figure 4.

FIGURE 4. TOC results compared to the Non-Participant
baseline
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4.3. Evaluation of the Vehicle-to-Grid Impact

The discharge prices were dimensioned to apply in
situations of grid jeopardy, in order to make sure that
the V2G capability can sometimes provide a profitable
charging process to the EV owner. This demonstrates
that the participant has incentive to help the grid
during jeopardy periods. Regardless of the DRP used,
the vehicle-to-grid capability mixed with its appropriate
objective function, provides the best results in terms of
cost and overall domestic load shifting. Such is because,
although the charging power curve presents a large spike
in the off peak periods (see Figure 5), its merger with
the home consumption model, will lead to an overall
flatter domestic curve. It is also worth mentioning that
the RTP provides less profit than any other DRP, but,
once again, this depends on market prices and should
be subject to studies with a bigger time frame.

FIGURE 5. Power Demand curves for the first charging
cycle in a regular charging situation and with the V2G
program

4.4. Evaluation of Opportunity of Cost Func-
tion

The Opportunity of Cost program presents itself
as a more niche pairing for the cost minimisation
objective function, proving slightly more economically
efficient. Despite this, the results may vary greatly
with the market prices presented. The OCs relatively
niche usage in vehicles with a mix of long and short
travels during the week, is especially relevant in the
current Covid working situation, as more and more
workers adopt working from home schedule, with the
occasional trip to the office. Despite all of this, the
DR service provider, like the FO’s, must only assign
this type of optimisation to a carefully studied group of
participants, which must be aware that cost reduction
is the primary concern in this case and that this might
lead to low battery charges at departure.

4.5. Aggregator Focused Scenario

4.5.1. Event Control
The Event Control shows that the interruption of
vehicles charges by the FO/aggregator is a fairly simple
and fast operation from a coding stand point, which
would make it ideal to deal with sudden excessive
demand periods. Although this curtailments during

peak periods may lead to overall cost reduction to both
the utilities and the consumer, most participants in
this type of program are mainly concerned about their
vehicles battery charge, so a monetary incentive most be
provided to them in order to compensate the reduction
in comfort level.

4.5.2. Demand Reduction Compensation
Three methods are proposed to calculate the com-
pensation that must be provided for clients who par-
ticipate in the demand reduction during peak peri-
ods. All of them utilise the agreggator offer curve of
the hour in question. Two of them, SWM-A and
SWM-B, utilise Social Welfare Maximisation prob-
lems, concerning, respectively,the entire electricity mar-
ket/retailer/costumer and the retailer/participant rela-
tions. Both of these provide increasingly better results
until the peak/optimal cut percentage, and then begin
to descent. On the other hand, a Profit Base Formula
is also proposed, which provides proportional compen-
sation/charging cut returns. This function takes into
account the lost revenue from the retailer and the in-
crease in costumer profit.

5. CONCLUSIONS

This thesis aimed to develop several programs to help
the grid accommodate the large scale usage/integration
o electrical vehicles, without it needing to suffer major
alterations and/or reinforcements. The need for this
comes from the large increase in electrical demand that
would follow such adoption.
To accomplish this two methodologies were proposed.
The first, denominated Participant Perspective,
considered several demand response programs, pro-
posed by the system operator or retailer and the use of
different objective functions to optimise the EVs charg-
ing. The second methodology, denominated Aggrega-
tor Perspective, puts forward an aggregator managed
EV charging process, considering the benefits for booth
the system and the participants. This scenario was for-
mulated with some assumptions in mind: the programs
are only done with the consent of the EV owners and the
combined charging demand of all the managed electri-
cal vehicles is significant enough to influence the gener-
ation dispatch and costs. This second condition, makes
this scenario more aimed at smaller and isolated sys-
tems like islands or remote areas.
This two different perspectives were then simulated util-
ising realistic data (travel expenditures and periods,
electricity price tariffs, charging power, etc), in order
to access how they would preform in real world appli-
cations. An analyses of the simulation results shows
that the suggested DR programs and objective func-
tions can result in significant improvements when com-
pared to the normal charging behaviour. This improve-
ments are both to the participant, in the form of re-
duced charging costs, and to the overall system because

Thesis 2021 September



10

of the reduction of maximum peak demand values and
the better distribution of energy consumption during
the day. The energy curtailment compensation tables
also produced values who would be feasible within the
electricity values used, demonstrating that the proposed
methods are viable. The methods also showed different
pros and cons, which makes them suitable for a variety
of different situations and purposes.
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